Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.005
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474240

RESUMO

Advanced methods of treatment are needed to fight the threats of virus-transmitted diseases and pandemics. Often, they are based on an improved biophysical understanding of virus replication strategies and processes in their host cells. For instance, an essential component of the replication of the hepatitis C virus (HCV) proceeds under the influence of nonstructural HCV proteins (NSPs) that are anchored to the endoplasmatic reticulum (ER), such as the NS5A protein. The diffusion of NSPs has been studied by in vitro fluorescence recovery after photobleaching (FRAP) experiments. The diffusive evolution of the concentration field of NSPs on the ER can be described by means of surface partial differential equations (sufPDEs). Previous work estimated the diffusion coefficient of the NS5A protein by minimizing the discrepancy between an extended set of sufPDE simulations and experimental FRAP time-series data. Here, we provide a scaling analysis of the sufPDEs that describe the diffusive evolution of the concentration field of NSPs on the ER. This analysis provides an estimate of the diffusion coefficient that is based only on the ratio of the membrane surface area in the FRAP region to its contour length. The quality of this estimate is explored by a comparison to numerical solutions of the sufPDE for a flat geometry and for ten different 3D embedded 2D ER grids that are derived from fluorescence z-stack data of the ER. Finally, we apply the new data analysis to the experimental FRAP time-series data analyzed in our previous paper, and we discuss the opportunities of the new approach.


Assuntos
Retículo Endoplasmático , Hepatite C , Humanos , Retículo Endoplasmático/metabolismo , Hepacivirus/metabolismo , Replicação Viral , Difusão , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo
2.
Life Sci ; 338: 122412, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191051

RESUMO

AIMS: Hepatitis C virus (HCV) relies on the viral and host factors to complete its life cycle. It has evolved to profit from Akt activation at some stage in its life cycle through various mechanisms, notably by activating lipogenesis, which is crucial for infectious virions production. MATERIALS AND METHODS: By employing an Akt-specific inhibitor, the impact of Akt on intracellular and extracellular infectivity was investigated. To ascertain the role of Akt in the HCV life cycle, the two-part cell culture-derived HCV infection protocol utilizing Akt1 small interfering RNAs (siRNAs) was implemented. The impact of Akt1 on intracellular HCV transition was determined using membrane flotation assay and proximity ligation assay coupled with Anti-Rab7 immunoprecipitation and immunofluorescence. KEY FINDINGS: Akt1 silencing reduced infectious virions release to a degree comparable to that of ApoE, a host component involved in the HCV assembly and release, suggesting Akt1 was critical in the late stage of the HCV life cycle. Extracellular infectivity of HCV was inhibited by brefeldin A, and the inhibitory effect was augmented by Akt1 silencing and partially restored by ectopic Akt1 expression. Immunofluorescence revealed that Akt1 inhibition suppressed the interaction between HCV core protein and lipid droplet. Akt1 silencing impeded the transition of HCV from the endoplasmic reticulum to the endosome and hence inhibited the secretion of HCV infectious virions from the late endosome. SIGNIFICANCE: Our study demonstrates that Akt1 has an impact on the lipogenesis pathway and plays a critical role in the assembly and secretion of infectious HCV.


Assuntos
Hepacivirus , Hepatite C , Humanos , Retículo Endoplasmático/metabolismo , Endossomos , Hepacivirus/metabolismo , Hepatite C/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Vírion , Montagem de Vírus/fisiologia
3.
Nucleic Acids Res ; 52(6): 3278-3290, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38296832

RESUMO

Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.


Assuntos
Flaviviridae , Flavivirus , Flavivirus/genética , RNA Polimerase Dependente de RNA/metabolismo , Flaviviridae/genética , Metiltransferases/metabolismo , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
Life Sci ; 337: 122338, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072190

RESUMO

Hepatitis C virus (HCV) infection is recognized as a major causative agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV non-structural protein 5A (NS5A) is a dimeric phosphoprotein with a hyperphosphorylated form to act as a switch that regulates HCV replication and assembly. NS5A inhibitors have been utilized as the scaffold for combination therapy of direct-acting antiviral agents (DAA). However, the mode of action of NS5A inhibitors is still unclear due to the lack of mechanistic detail regarding NS5A phosphorylation and dimerization in the HCV life cycle. It has been demonstrated that phosphorylation of NS5A at Ser235 is essential for RNA replication of the JFH1 strain. In this report, we found that NS5A phosphomimetic Ser235 substitution (Ser-to-Asp mutation) formed a dimer that was resistant to disruption by NS5A inhibitors as was the NS5A resistance-associated substitution Y93H. Phosphorylation of NS5A at Ser235 residue was required for the interaction of two NS5A-WT molecules in JFH1-based cell culture system but not absolutely required for dimerization of the NS5A-Y93H mutant. Interestingly, HCV nonstructural proteins from the subgenomic replicon NS3-5A was required for NS5A-WT dimerization but not required for NS5A-Y93H dimerization. Our data suggest that spontaneous Ser235 phosphorylation of NS5A and ensuing dimerization account for resistance of the JFH1/NS5A-Y93H mutant to NS5A inhibitors.


Assuntos
Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus/metabolismo , Fosforilação , Antivirais/uso terapêutico , Dimerização , Hepatite C Crônica/tratamento farmacológico , Hepatite C/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Resistência a Medicamentos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Methods Mol Biol ; 2733: 175-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064033

RESUMO

The reverse genetics system commonly used for the production of hepatitis C virus (HCV), which is a major causative agent of liver diseases, involves introduction of the viral genomic RNA synthesized in vitro into human hepatoma cells by electroporation. As an alternative methodology, we describe a cell culture system based on transfection with an expression plasmid containing a full-length HCV cDNA clone flanked by RNA polymerase I promoter and terminator sequences to generate infectious virus particles from transfected cells.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Genética Reversa , Hepatite C/genética , Carcinoma Hepatocelular/genética , Transfecção , DNA Complementar/genética , RNA Viral/genética
6.
Viruses ; 15(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140670

RESUMO

Hepatitis C virus (HCV) is a positive-sense, single-stranded RNA virus that causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The release of infectious HCV particles from infected hepatocytes is a crucial step in viral dissemination and disease progression. While the exact mechanisms of HCV particle release remain poorly understood, emerging evidence suggests that HCV utilizes intracellular membrane trafficking and secretory pathways. These pathways include the Golgi secretory pathway and the endosomal trafficking pathways, such as the recycling endosome pathway and the endosomal sorting complex required for transport (ESCRT)-dependent multivesicular bodies (MVBs) pathway. This review provides an overview of recent advances in understanding the release of infectious HCV particles, with a particular focus on the involvement of the host cell factors that participate in HCV particle release. By summarizing the current knowledge in this area, this review aims to contribute to a better understanding of endosomal pathways involved in the extracellular release of HCV particles and the development of novel antiviral strategies.


Assuntos
Hepatite A , Hepatite C , Humanos , Hepacivirus/metabolismo , Endossomos/metabolismo , Vírion/metabolismo , Liberação de Vírus , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
7.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37978846

RESUMO

Hepatocellular carcinoma (HCC) has been associated with hepatitis C viral (HCV) infection as a potential risk factor. Nonetheless, the precise genetic regulatory mechanisms triggered by the virus, leading to virus-induced hepatocarcinogenesis, remain unclear. We hypothesized that HCV proteins might modulate the activity of aberrantly methylated HCC genes through regulatory pathways. Virus-host regulatory pathways, interactions between proteins, gene expression, transport, and stability regulation, were reconstructed using the ANDSystem. Gene expression regulation was statistically significant. Gene network analysis identified four out of 70 HCC marker genes whose expression regulation by viral proteins may be associated with HCC: DNA-binding protein inhibitor ID - 1 (ID1), flap endonuclease 1 (FEN1), cyclin-dependent kinase inhibitor 2A (CDKN2A), and telomerase reverse transcriptase (TERT). It suggested the following viral protein effects in HCV/human protein heterocomplexes: HCV NS3(p70) protein activates human STAT3 and NOTC1; NS2-3(p23), NS5B(p68), NS1(E2), and core(p21) activate SETD2; NS5A inhibits SMYD3; and NS3 inhibits CCN2. Interestingly, NS3 and E1(gp32) activate c-Jun when it positively regulates CDKN2A and inhibit it when it represses TERT. The discovered regulatory mechanisms might be key areas of focus for creating medications and preventative therapies to decrease the likelihood of HCC development during HCV infection.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Viroses , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/complicações , Hepatite C/genética , Histona-Lisina N-Metiltransferase
8.
Nat Commun ; 14(1): 7753, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012128

RESUMO

Chemical inducer of dimerization (CID) modules can be used effectively as molecular switches to control biological processes, and thus there is significant interest within the synthetic biology community in identifying novel CID systems. To date, CID modules have been used primarily in engineering cells for in vitro applications. To broaden their utility to the clinical setting, including the potential to control cell and gene therapies, the identification of novel CID modules should consider factors such as the safety and pharmacokinetic profile of the small molecule inducer, and the orthogonality and immunogenicity of the protein components. Here we describe a CID module based on the orally available, approved, small molecule simeprevir and its target, the NS3/4A protease from hepatitis C virus. We demonstrate the utility of this CID module as a molecular switch to control biological processes such as gene expression and apoptosis in vitro, and show that the CID system can be used to rapidly induce apoptosis in tumor cells in a xenograft mouse model, leading to complete tumor regression.


Assuntos
Hepatite C , Simeprevir , Humanos , Camundongos , Animais , Simeprevir/farmacologia , Simeprevir/uso terapêutico , Hepatite C/tratamento farmacológico , Hepacivirus/metabolismo , Terapia Genética , Apoptose , Antivirais/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37789674

RESUMO

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/metabolismo , Proteínas Virais/metabolismo , Hepatite C/metabolismo , Mitocôndrias/metabolismo , Antivirais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
J Virol ; 97(9): e0057223, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695056

RESUMO

The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.


Assuntos
Vírus da Diarreia Viral Bovina , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Vírus da Diarreia Viral Bovina/genética , Hepacivirus/metabolismo , Mutação , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Linhagem Celular , Animais
11.
J Mol Med (Berl) ; 101(11): 1409-1420, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704856

RESUMO

Hepatitis C virus (HCV) coinfection with human immunodeficiency virus (HIV) has a detrimental impact on disease progression. Increasing evidence points to extracellular vesicles (EVs) as important players of the host-viral cross-talk. The microRNAs (miRNAs), as essential components of EVs cargo, are key regulators of normal cellular processes and also promote viral replication, viral pathogenesis, and disease progression. We aimed to characterize the plasma-derived EVs miRNA signature of chronic HCV infected and HIV coinfected patients to unravel the molecular mechanisms of coinfection. EVs were purified and characterized from 50 plasma samples (21 HCV mono- and 29 HCV/HIV co-infected). EV-derived small RNAs were isolated and analyzed by massive sequencing. Known and de novo miRNAs were identified with miRDeep2. Significant differentially expressed (SDE) miRNA identification was performed with generalized linear models and their putative dysregulated biological pathways were evaluated. Study groups were similar for most clinical and epidemiological characteristics. No differences were observed in EVs size or concentration between groups. Therefore, HCV/HIV co-infection condition did not affect the concentration or size of EVs but produced a disturbance in plasma-derived EVs miRNA cargo. Thus, a total of 149 miRNAs were identified (143 known and 6 de novo) leading to 37 SDE miRNAs of which 15 were upregulated and 22 downregulated in HCV/HIV co-infected patients. SDE miRNAs regulate genes involved in inflammation, fibrosis, and cancer, modulating different biological pathways related to HCV and HIV pathogenesis. These findings may help to develop new generation biomarkers and treatment strategies, in addition to elucidate the mechanisms underlying virus-host interaction. KEY MESSAGES: HCV and HCV/HIV displayed similar plasma-EV size and concentration. EVs- derived miRNA profile was characterized by NGS. 37 SDE miRNAs between HCV and HCV/HIV were observed. SDE miRNAs regulate genes involved in inflammation, fibrosis and cancer.


Assuntos
Coinfecção , Vesículas Extracelulares , Infecções por HIV , Hepatite C , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Coinfecção/genética , Coinfecção/patologia , HIV/genética , HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/genética , Hepatite C/complicações , Hepatite C/genética , Hepatite C/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Inflamação/patologia , Neoplasias/patologia , Fibrose , Progressão da Doença
12.
Mol Biol (Mosk) ; 57(5): 863-872, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752651

RESUMO

The pathology of diseases arising from infections by viruses of Flaviviridae is largely determined by the development of systemic inflammation. The cytokines interleukin-1beta and interleukin-18 play a key role in triggering inflammation. Their secretion from cells, in its turn, is induced upon activation of inflammasomes. Activation of NLRP3 (NLR pyrin domain-containing family 3) inflammasomes was detected in cells infected with Flaviviridae. Some nonstructural proteins of these viruses have been shown to be able to activate or to inhibit the NLRP3 inflammasome, in particular, through interaction with its components. In this study, a functional NLRP3 inflammasome was reconstructed in human HEK293T cells and the effect of some nonstructural proteins of individual Flaviviridae viruses on it was studied. This model did not reveal any impact of nonstructural NS1 proteins of the West Nile virus, NS3 of hepatitis C virus, or NS5 of tick-borne encephalitis virus on the inflammasome components content. At the same time, in the presence of the NS1 of the West Nile virus and NS5 of the tick-borne encephalitis virus, the level of secretion of interleukin-1beta did not change, whereas in the presence of the NS3 protein of the hepatitis C virus, it increased by 1.5 times. Thus, NS3 can be considered as one of the factors of NLRP3 inflammasome activation and inflammatory pathogenesis in chronic hepatitis C virus infection.


Assuntos
Hepatite C Crônica , Inflamassomos , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células HEK293 , Inflamação
13.
J Virol ; 97(10): e0089223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772835

RESUMO

IMPORTANCE: The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.


Assuntos
Antivirais , Hepacivirus , Proteínas do Core Viral , Humanos , Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Nucleocapsídeo/antagonistas & inibidores , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Replicação Viral , Imagem Individual de Molécula/métodos , Ligação Proteica
14.
J Struct Biol ; 215(3): 108013, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586469

RESUMO

Viral proteins interact with lipid membranes during various stages in the viral life cycle to propagate infection. p7 is an ion channel forming protein of Hepatitis C virus (HCV) that participates in viral assembly. Studies show that it has close ties to lipid metabolism in the cell and anionic phosphatidylserine (PS) lipids are suggested to be key for its permeabilizing function, but the mechanism of its interaction with the lipid environment is largely unknown. To begin unraveling the molecular processes of the protein, we evaluated the impact of lipid environment on the binding and insertion mechanism of p7 prior to channel formation and viral assembly using molecular dynamics simulations. It is seen that p7 is sensitive to its lipid environment and results in different remodeling patterns in membranes. Helix 1 (H1) is especially important for peptide insertion, with deeper entry taking place when the membrane contains phosphatidylserine (PS). Helix 2 (H2) and the adjacent loop connecting to Helix 3 (H3) prompts recruitment of phosphatidylethanolamine (PE) lipids to the protein binding site in membrane models with lower surface charge. This work provides perspectives on the interplay between protein-lipid dynamics and membrane composition, and insights on membrane reorganization in mechanisms of disease.


Assuntos
Fosfatidilserinas , Proteínas Viroporinas , Proteínas Viroporinas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Virais/química , Hepacivirus/química , Hepacivirus/metabolismo , Simulação de Dinâmica Molecular
15.
ACS Infect Dis ; 9(8): 1488-1498, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37436367

RESUMO

The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Nucleotidiltransferases , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
16.
J Med Virol ; 95(7): e28955, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465865

RESUMO

Coinfection with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) increases immune activation, inflammation, and oxidative stress that could lead to premature senescence. Different HCV infections, either acute or chronic infection, could lead to distinct premature cellular senescence in people living with HIV (PLWHIV). Observational study in 116 PLWHIV under antiretroviral treatment with different HCV status: (i) n = 45 chronically infected with HCV (CHC); (ii) n = 36 individuals who spontaneously clarify HCV (SC); (iii) n = 35 HIV controls. Oxidative stress biomarkers were analyzed at lipid, DNA, protein, and nitrates levels, as well as antioxidant capacity and glutathione reductase enzyme. Replicative senescence was evaluated by relative telomere length (RTL) measurement. Additionally, 26 markers of Senescence-Associated Secretory Phenotype (SASP) were analyzed by multiplex immunoassays (Luminex xMAP technology). Differences were evaluated by generalized linear model (GLMs) adjusted by most significant covariates. The SC group had a senescence signature similar to the HIV control group and slightly lower SASP levels. However, significant differences were observed with respect to the CHC group, where an increase in the nitrate concentration [adjusted arithmetic mean ratio, aAMR = 1.73 (1.27-2.35), p < 0.001, q = 0.009] and the secretion of 13 SASP-associated factors [granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-ß, interleukin (IL)-1ß, IL-2, IL-8, IL-13, tumor necrosis factor (TNF)-α, IL-1α, IL-1RA, IL-7, IL-15, C-X-C motif chemokine ligand 10 (IP-10), stem cell factor (SCF); q < 0.1)] was detected. The CHC group also showed higher values of IL-1α, IP-10, and placental growth factor 1 (PIGF-1) than HIV controls. The SC group showed a slightly lower senescence profile than the HIV group, which could indicate a more efficient control of viral-induced senescence due to their immune strengths. Chronic HCV infection in PLWHIV led to an increase in nitrate and elevated SASP biomarkers favoring the establishment of viral persistence.


Assuntos
Coinfecção , Infecções por HIV , Hepatite C , Humanos , Feminino , HIV/metabolismo , Hepacivirus/metabolismo , Quimiocina CXCL10 , Nitratos , Fator de Crescimento Placentário , Biomarcadores/metabolismo , Fator de Necrose Tumoral alfa , Coinfecção/patologia
17.
World J Gastroenterol ; 29(18): 2798-2817, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37274069

RESUMO

BACKGROUND: Hepatic fibrosis is a serious condition, and the development of hepatic fibrosis can lead to a series of complications. However, the pathogenesis of hepatic fibrosis remains unclear, and effective therapy options are still lacking. Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1 (NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis, but its role in diseases including hepatic fibrosis remains undefined. Therefore, additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment. AIM: To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1. METHODS: Twenty-four male C57BL/6 mice were randomized and separated into three groups, comprising the normal, fibrosis, and calcitriol treatment groups, and liver fibrosis was modeled by carbon tetrachloride (CCl4). To evaluate the level of hepatic fibrosis in every group, serological and pathological examinations of the liver were conducted. TGF-ß1 was administered to boost the in vitro cultivation of LX-2 cells. NS3TP1, α-smooth muscle actin (α-SMA), collagen I, and collagen III in every group were examined using a Western blot and real-time quantitative polymerase chain reaction. The activity of the transforming growth factor beta 1 (TGFß1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected. The statistical analysis of the data was performed using the Student's t test. RESULTS: NS3TP1 promoted the activation, proliferation, and differentiation of hepatic stellate cells (HSCs) and enhanced hepatic fibrosis via the TGFß1/Smad3 and NF-κB signaling pathways, as evidenced by the presence of α-SMA, collagen I, collagen III, p-smad3, and p-p65 in LX-2 cells, which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference. The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression, as shown by the luciferase assay. NS3TP1 inhibited the apoptosis of HSCs. Moreover, both Smad3 and p65 could bind to NS3TP1, and p65 increased the promoter activity of NS3TP1, while NS3TP1 increased the promoter activity of TGFß1 receptor I, as indicated by coimmunoprecipitation and luciferase assay results. Both in vivo and in vitro, treatment with calcitriol dramatically reduced the expression of NS3TP1. Calcitriol therapy-controlled HSCs activation, proliferation, and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice. Furthermore, calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1. CONCLUSION: Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique, prospective therapeutic target in hepatic fibrosis.


Assuntos
Calcitriol , NF-kappa B , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Proteínas não Estruturais Virais , Animais , Masculino , Camundongos , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Tetracloreto de Carbono/toxicidade , Colágeno Tipo I/metabolismo , Hepacivirus/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteína Smad3/metabolismo
18.
Mol Biol (Mosk) ; 57(3): 427-439, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326046

RESUMO

The key role of histone deacetylases (HDAC) in the regulation of the cellular response to infection with the hepatitis C virus (HCV) was first demonstrated in 2008. When studying the metabolism of iron in the liver tissues of patients with chronic hepatitis C, the authors found that the expression of the hepcidin gene (HAMP), a hormone regulator of iron export, is markedly reduced in hepatocytes under conditions of oxidative stress caused by viral infection. HDAC were involved in the regulation of hepcidin expression through the control of acetylation level of histones and transcription factors, primarily STAT3, associated with the HAMP promoter. The purpose of this review was to summarize current data on the functioning of the HCV-HDAC3-STAT3-HAMP regulatory circuit as an example of a well-characterized interaction between the virus and the epigenetic apparatus of the host cell.


Assuntos
Hepatite C , Hepcidinas , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ferro/metabolismo , Replicação Viral
19.
J Virol ; 97(7): e0018023, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338368

RESUMO

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Assuntos
Retículo Endoplasmático , Hepatite C , Humanos , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Via Secretória , Hepacivirus/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico , Hepatite C/metabolismo , Estágios do Ciclo de Vida , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
20.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240132

RESUMO

The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.


Assuntos
Fígado Gorduroso , Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Transferases/metabolismo , Hepatite C/genética , Fígado Gorduroso/patologia , Replicação Viral , Genótipo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Fenótipo , Fosfatidiletanolamina N-Metiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...